Reynolds number effects on lipid vesicles

نویسندگان

  • David Salac
  • Michael J. Miksis
چکیده

Vesicles exposed to the human circulatory system experience a wide range of flows and Reynolds numbers. Previous investigations of vesicles in fluid flow have focused on the Stokes flow regime. In this work the influence of inertia on the dynamics of a vesicle in a shearing flow is investigated using a novel level-set computational method in two dimensions. A detailed analysis of the behaviour of a single vesicle at finite Reynolds number is presented. At low Reynolds numbers the results recover vesicle behaviour previously observed for Stokes flow. At moderate Reynolds numbers the classical tumbling behaviour of highly viscous vesicles is no longer observed. Instead, the vesicle is observed to tank-tread, with an equilibrium angle dependent on the Reynolds number and the reduced area of the vesicle. It is shown that a vesicle with an inner/outer fluid viscosity ratio as high as 200 will not tumble if the Reynolds number is as low as 10. A new damped tank-treading behaviour, where the vesicle will briefly oscillate about the equilibrium inclination angle, is also observed. This behaviour is explained by an investigation on the torque acting on a vesicle in shear flow. Scaling laws for vesicles in inertial flows have also been determined. It is observed that quantities such as vesicle tumbling period follow square-root scaling with respect to the Reynolds number. Finally, the maximum tension as a function of the Reynolds number is also determined. It is observed that, as the Reynolds number increases, the maximum tension on the vesicle membrane also increases. This could play a role in the creation of stable pores in vesicle membranes or for the premature destruction of vesicles exposed to the human circulatory system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Reynolds Number Effects on Flow over a Wall-Mounted Cube in a Channel Using LES

Turbulent flow over wall-mounted cube in a channel was investigated numerically using Large Eddy Simulation. The Selective Structure Function model was used to determine eddy viscosity that appeared in the subgrid scale stress terms in momentum equations. Studies were carried out for the flows with Reynolds number ranging from 1000 to 40000. To evaluate the computational results, data was compa...

متن کامل

Effects of variations in magnetic Reynolds number on magnetic field distribution in electrically conducting fluid under magnetohydrodynamic natural convection

In this study the effect of magnetic Reynolds number variation on magnetic distribution of natural convection heat transfer in an enclosure is numerically investigated. The geometry is a two dimensional enclosure which the left wall is hot, the right wall is cold and the top and bottom walls are adiabatic. Fluid is molten sodium with Pr=0.01 and natural convection heat transfer for Rayleigh num...

متن کامل

Numerical Investigation of Magnetic Field Effects on Mixed Convection Flow in a Nanofluid-filled Lid-driven Cavity

In this work, the stencil adaptive method is applied to investigate the effects of a magnetic field on mixed convection of Al2O3-water nanofluid in a square lid-driven cavity. The incompressible Navier-Stokes equations are solved by an adaptive mesh method which has superior numerical advantages compared to the traditional method on the uniform fine grid. The main objective of this study is to ...

متن کامل

The Effect of Viscous Dissipation and Variable Properties on Nanofluids Flow in Two Dimensional Microchannels

Laminar two dimensional forced convective heat transfer of Al2O3 –water nanofluid in a horizontal microchannel has been studied numerically, considering axial conduction, viscous dissipation and variable properties effects. The existing criteria in the literature for considering viscous dissipation in energy equation are compared for different cases and the most proper one is applied for the re...

متن کامل

Experimental Investigation of Mixed Convection Heat Transfer in Vertical Tubes by Nanofluid: Effects of Reynolds Number and Fluid Temperature

An experimental investigation was carried out to study mixed convection heat transfer from Al2O3-water nanofluid inside a vertical, W-shaped, copper-tube with uniform wall temperature. The tests covered different ranges of some involved parameters including Reynolds number, temperature and particles volume fraction. The results showed that the rate of heat transfer coefficient improved with Rey...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012